
Compact Test Set Generation for
Test Compression-based Designs

Stephan Eggersglüß∗†

∗Institute of Computer Science
University of Bremen

28359 Bremen, Germany
segg@informatik.uni-bremen.de

†Cyber-Physical Systems
DFKI GmbH

28359 Bremen, Germany

Abstract—The manufacturing test is an important and ex-
pensive part of the overall electronic design flow. A main cost
factor is the steadily increasing test data volume. Modern designs
typically use extra hardware, i.e. test compression hardware, to
compress the scan patterns to save test data volume. However,
this imposes constraints on the pattern generation process. A high
number of unspecified bits is typically needed to compress a test
pattern successfully. In this paper, a compact test set generation
technique is proposed for test compression-based designs. The
proposed technique is based on a fully-specified test set and uses
test vector decomposition, multiple-fault-detection and atomic
vector ordering in order to build a highly compact test set with a
guaranteed percentage of unspecified bits. Experimental results
on benchmark and industrial circuits show that the approach
is able to achieve a significant pattern reduction compared to
previous approaches. Furthermore, it is shown that a higher
compaction of the basis test set leads to a higher compaction
of the resulting partially-specified test set.

I. INTRODUCTION

The task of the manufacturing test in the EDA design flow
is to filter out defective devices. The increasing size of today’s
circuits leads to steadily increasing test costs. One heavy cost
factor is the large test data volume needed to test the circuits.
The manufacturer typically undertakes large efforts to decrease
the test data volume and, consequently, decrease the test costs.
Classically, static or dynamic test compaction algorithms [1]–
[5] are used for traditional scan Design-For-Testability (DFT)
to produce less test patterns by, at the same time, high fault
coverage with respect to a target fault model. However, this is
not sufficient anymore for today’s large System-on-Chip (SoC)
designs.

Therefore, test compression approaches, e.g [6]–[12], have
been developed. Here, the test data is stored on the tester in
compressed form. However, this also necessitates the addition
of extra on-chip hardware. The additional hardware is used to
decompress the test stimulus from the tester feeding the scan
chains as well as compacting the responses coming from the
scan chains.

The test compression algorithms make use of the circum-
stance that the tests generated by ATPG tools contain un-
specified values, i.e. X-values. Typically only a small portion,
e.g. 1% to 5% of the input bits [11], is specified by 0 or 1.
The remaining bits are don’t cares and used to compress the
tests. However, with respect to the compression technique used
as well as to the targeted compression ratio, there is a limit
of the number of specified bits in one test. If the number of
specified bits exceeds a certain threshold, the probability that
the compression algorithm cannot compress the test increases
drastically. As a result, such a test is likely to be dropped which

decreases fault coverage. For instance, if an LFSR-based test
compression technique is used, the length l of the LFSR should
be chosen such that l = smax +20 where smax is the maximum
number of specified bits in any test [6].

Traditional compaction techniques for ATPG are not well
suited for such test compression-based designs, since these
approaches achieve high compaction by basically specifying
don’t care bits in the test to detect additional faults. However,
a large number of don’t care bits is needed to achieve a
high compression ratio as explained above. Therefore, dynamic
compaction approaches have to be modified that they can be
applied to test compression-based designs. A straight-forward
way to incorporate the characteristics of a test compression-
based design into a compaction flow is to apply a regular
dynamic compaction approach until a certain limit of care bits
or a more sophisticated threshold is reached.

More elaborated approaches have been developed. Tailored
ATPG approaches were proposed in [13], [14] in which
specific compression or BIST architectures are incorporated as
constraints into the ATPG process to decrease test data volume.
However, the computational complexity grows significantly
especially for larger circuits if these additional constraints
are enforced. Therefore, these so-called one-step ATPG ap-
proaches are particularly not feasible for linear decompressors
which provide greater compression [11]. Recently, a new
test compression method was proposed which includes the
generation of test templates to guide ATPG to produce highly
compressible test cubes [15].

Other ATPG-based techniques have been introduced which
suffer from the increase in ATPG complexity and long run
times. The approach in [16] uses formal techniques to produce
test cubes for given single paths which are proven to be
minimal in the number of assignments. However, no merging
algorithm is given. An optimization procedure is proposed in
[17] which compacts a given set of sensitized long paths and
relaxes the generated tests by lifting.

ATPG-independent approaches have been introduced to
avoid the increase of the ATPG complexity. These approaches
take a pre-generated test set as input and generate a new test
set in which the number of unspecified values is increased
while keeping the same fault coverage. They can be roughly
categorized in two different classes. The first class [18]–[21]
uses test relaxation techniques and does not change the number
of tests in the test set. Care bits not necessary for single fault
detection are determined and unspecified by path tracing [18],
[19], using hierarchical fault-compatibility [21] or implication
graphs [20]. The effectiveness of these approaches is limited
due to the lack of flexibility.



The second class [22]–[24] is more flexible and changes the
number of tests in the initial test set. By this, the percentage of
unspecified bits can be increased compared to approaches of
the first category. However, this comes typically at the cost of a
pattern count increase. This is acceptable for test compression-
based designs since the increase of unspecified bits typically
results in the possibility of a higher compression ratio.

The approach described in [22] uses Test Vector Decompo-
sition (TVD) [18] where a test is decomposed into its atomic
components. A parent pattern t is iteratively split into several
test vectors T such that the test vectors in T detect all faults
that are detected by t but each with fewer specified bits. A
similar technique is also used in [23]. Here, each so-called
bottleneck vector whose number of care bits is above a certain
threshold is replaced by a set of test vectors meeting the
requirements. In order to find a small number of test vectors
as replacement, tests of essential faults are merged first. The
technique in [24]1 is based on test stripping [20]. Similar to
[23], tests whose number of care bits is above a threshold are
splitted using pattern duplication [22].

The new technique proposed in this paper introduces a
novel compaction methodology for test compression-based de-
signs and uses an extended TVD procedure. A fully-specified
test set Tf generated by regular ATPG tools is transformed
into a partially-specified test set Tp. In the test set Tp, the
number of care bits does not exceed a certain parameterized
threshold to meet the test compression requirements. Several
new techniques are introduced to keep the overall number of
tests in the test set low to decrease the test data volume. A
main difference to previous approaches is that the previous
approaches operate more in a pattern-focused manner, e.g. pat-
tern duplication or splitting. The proposed approach does not
use the pattern structures of Tf but constructs the test set Tp

completely new from scratch based on the atomic test vectors.

• A fast greedy test cube merging algorithm for atomic
test vectors is introduced. The merging algorithm
gains its effectiveness due to the following techniques.

• Diversity-based atomic vector creation – In order to
produce a divers set of atomic test vectors, a new
dynamically adjusted test relaxation procedure is in-
troduced.

• Multiple detection – In a complete test set, most faults
are detected multiple times. This can be leveraged
during test set construction to increase the merging
capabilities.

• Fault and atomic vector ordering – The proposed
merging algorithm uses orderings based on the number
of detections and the size of the atomic vectors.

Experimental results on benchmark as well as industrial
circuits show that a fully-specified test set can be transformed
into a partially-specified test set in a fast and effective way.
An interesting observation is that the size of the resulting
test set Tp strongly depends on the size of the basic test set
Tf . Generally, a higher compaction of Tf leads to a smaller
pattern count of Tp. This indicates that the application of
regular test compaction techniques is also advantageous for
test compression-based designs.

1The method is applied for concurrent BIST but is basically also applicable
to test compression-based designs.

Algorithm 1 Atomic Vector Extraction
Input: Set of necessary values N , Simulated Test t
Output: Set of input assignments ta

while N .empty() == false do
NecessaryValue n = N .getAndDeleteElement();
Gate g = n.gate;
Value v = n.value;
if g.isInput() then
ta.add(g,v); continue;

end if
if v == (g.controllingValue() ⊕ g.isInvertingGate()) then

Gate p = ChooseOneInputWithControllingValue();
N .insert(p);

else
N .insert(g.allInputs())

end if
end while

The paper is structured as follows. Section II reviews
the existing TVD technique as well as the newly proposed
extensions. Section III gives the overall merging algorithm and
introduces the ordering techniques. Experimental results are
given in Section IV and conclusions are drawn in Section V.

II. TEST VECTOR DECOMPOSITION

Test Vector Decomposition (TVD) is used for a given (fully-
or partially-specified) test vector t and a set of Faults Ft

detected by t. The task is to split the vector t into its atomic
components ta1 , . . . , t

a
n. Each atomic component taj (or atomic

test vector) detects at least one fault fi ∈ Ft but contains only
a small set of assignments necessary to detect fi, i.e. they are
highly unspecified.

The advantage of using TVD is that the highly unspecified
atomic test vectors provide a great flexibility to re-merge the
tests to create a test vector with more unspecified bits than
before [19] or even reduce the pattern count if all atomic
vectors of one test can be merged into other patterns [18].

After fault simulation, the propagation path of the fault
f from the fault site to an observation point is known. The
underlying idea is that the complete input cone is not necessary
to justify the necessary values, i.e. values on the side inputs of
the propagation path as well as on the fault site. Controlling
values are leveraged to trace the necessary assignments to the
inputs to obtain a small set of values. Algorithm 1 shows an
example implementation of this technique.

The approach proposed in this paper uses the TVD tech-
nique to create atomic test vectors from the given test set.
However, compared to previous approaches, the proposed
technique focuses on Multiple Detection and uses a dynamic
metric to guide the TVD procedure which is described after
the general flow description. The following TVD flow is used
to decompose test set Tf :

1) Fault simulation for each t ∈ Tf is performed. Fault
dropping is generally disabled to support multiple
detection of faults.

2) Once, a fault f is detected by fault simulation, the
atomic test vector taf is extracted by the procedure
given in Algorithm 1.

3) The atomic test vector taf is assigned to f . A check is
performed to prevent the assignments of duplicates.



4) Fault simulation techniques are used to find other
faults detected by taf . If such a fault is found, a
reference to taf is assigned to this fault to keep the
additional memory requirements low.

As a result of this flow, the test set is decomposed into
its atomic test vectors and each testable fault has one or more
atomic test vectors assigned. Typically, there are many easy-
to-detect faults which are detected by many (e.g. hundreds of)
atomic test vectors. Preliminary studies have shown that the
general effectiveness of the overall procedure is not diminished
when the number of atomic test vectors assigned to one fault
is bounded by a constant number to prevent memory overhead.
Therefore, a maximum of 20 atomic test vectors is used in this
work.

The advantage of using multiple detection is that the merg-
ing algorithm which will be described in the next section has
more flexibility in merging the atomic test vectors and produce
a more compact test set. Generally, it has been observed that
the merging algorithm is more effective when the diversity of
the atomic test vectors is high. Therefore, the TVD procedure
is modified to obtain a more divers set of atomic test vectors.

A crucial step during TVD is the selection of the input
to trace when more than one controlling value is assumed on
the inputs (Function ChooseOneInputWithControllingValue()
in Algorithm 1). If a static metric, e.g. based on testability
measurements, is used, the algorithm will always follow the
same path when it visits the same gate with more than one
controlling value. This is disadvantageous for the diversity of
the atomic test set. Therefore, a dynamic metric is used to
select the input to trace.

A counter gc = 0 is assigned to each gate g in the circuit
and incremented each time when the gate is selected to be
traced. When a decision which gate input to trace has to
be made, the counters of each gate input which assumes a
controlling value are evaluated and the input with the lowest
counter value is selected. If two or more inputs have the
same lowest counter value, the gate input is selected based on
testability measurements. This procedure is similar to rotating
backtrace proposed in [2].

This selection procedure ensures that the TVD procedure
is not using always the same paths through the circuit and,
consequently, produces atomic test vectors with a higher
diversity.

III. MERGE ALGORITHM

This section describes the general merge algorithm used in
this work. It is assumed that the input test set Tf has already
been decomposed into atomic test vectors which are assigned
to their respective faults as described in the previous section.

It is further assumed that there is a maximum number of
specified bits given by the user with knowledge about the
applied test compression technique. A low number of specified
bits does not guarantee itself that a test will not be dropped by
the compression scheme. However, tests above a certain thresh-
old are very likely to be dropped. More elaborated schemes
for specific test compression systems can easily integrated or
coupled with the proposed algorithm like regular ATPG tools
as done in commercial tools.

The overall merge algorithm for the atomic test vectors is
shown in Algorithm 2. The detectable fault set F as well as the

Algorithm 2 Merge Algorithm
Input: Fault set F = f1, . . . , fn, Set of atomic test vectors
T a, int maxBits
Output: Test set Tp

while F .empty() == false do
Test t = X;
for all f ∈ F do

for all taf assigned to f do
if isCompatible(taf ,t,maxBits) == true then

merge(t,taf );
F .remove(f);
break;

end if
end for

end for
FaultSimulation(F ,t);
F .removeDetectedFaults();
Tp.add(t);

end while

set of atomic test vectors T a are given as input. Additionally, a
target number of maximum bits (threshold) is given. The flow
is influenced by the ATPG-based classical dynamic compaction
algorithm. First, an empty test t is created. Then, all faults are
processed in a loop in a given order. For each fault, the set of
assigned atomic test vectors is also processed in a given order.
If one atomic test vector taf of f is found to be compatible
to t, the test is merged into t, f is removed from F and the
next fault will be processed. If all faults have been processed,
the new test is fault simulated and all additionally detected
faults are removed from F . Then, t is added to the final test
set Tp. This procedure stops when all faults are removed from
f , i.e. all faults are detected by Tp.

During the procedure, the check of compatibility is very
important. Here, the maximum target number of bits maxBits
is also considered. A test vector t and an atomic test vector ta
are compatible if

• they have no conflicting input values, i.e. 0 and 1 on
the same input.

• the number of specified inputs of the union of t and
ta does not exceed maxBits.

The consideration of maxBits during the compatibility
check ensures that the final test set Tp does not contain any
test vector which exceeds the user-specified maximum number
of specified bits.

The advantage of using multiple-detection instead of
single-detection is that the merging algorithm is more flexible
in combining atomic test vectors since it is able to choose
from a larger pool of tests. However, since this is a greedy
algorithm,2 the ordering of the atomic test vectors and the
faults, respectively, is very important for its effectiveness.
Therefore, a detection-based ordering is proposed in the next
subsection.

A. Detection-based Ordering

With each merge operation, the flexibility for future merge
operations is further restricted. Performing the “wrong” merge

2Formal methods have also been studied for this application. However, the
run times for larger circuits were too high for practical application.



TABLE I. PATTERNS OF EXAMPLE

i1 i2 i3 i4 i5 i6 i7 i8 det. faults
p1 0 0 1 1 0 1 0 0 f1, f2, f3
p2 1 0 1 0 0 0 1 0 f1, f4, f7
p3 1 0 1 1 1 0 0 0 f2, f4, f5
p4 1 1 0 0 1 1 1 1 f2, f5, f6

operations too early could be disadvantageous for the final
pattern count since it may prevent other beneficous merge
operations.

Two different orderings are used in Algorithm 2.

1) The order of the faults in F
2) The order of the atomic test vectors taf assigned to f

The following aspects are considered for the fault ordering of
F :

• Number of detections d – Faults with a smaller number
of atomic test vectors should be processed first since
the merging algorithm has a limited flexibility.

• Size of the shortest atomic test vector s – When the
number of detections of two faults f1, f2 is equal, a
different metric is used. The size of each assigned
atomic test vector (number of specified bits) is ana-
lyzed and the fault with a larger shortest atomic test
vector is processed first because it is expected that
shorter atomic test vectors can be merged easier.

More formally, given two faults f1, f2 with number of
detections df1, df2 and size of the shortest atomic test vector
sf1, sf2, the order < (processed first) is defined as follows:

f1 < f2 =

{
1 if(df1 < df2) ∨ ((df1 = df2) ∧ (sf1 > sf2))

0 else

The second ordering is the ordering of the atomic test
vectors assigned to each fault. Generally, it is better to try to
merge atomic test vectors with less specified bits first since the
probability is higher that the test is compatible to the currently
constructed test and the merged test contains fewer specified
bits. Given two atomic test vectors ta1 and ta2 as well as the
number of specified bits bt1, bt2 of each test, the ordering <
(processed first) is defined as follows:

ta1 < ta2 =

{
1 if(bt1 < bt2)

0 else

The faults and atomic test vectors are ordered after TVD
has been finished before the beginning of the merging process.

B. Example

This subsection presents an example for the application
of the merging algorithm. A circuit C with eight inputs
i1, . . . , i8 and seven testable faults f1, . . . , f7 is given. The
patterns p1, . . . , p4 generated to test these faults are presented
in Table I. Each line also shows the faults detected by the
respective pattern. Table II presents the atomic test vectors
generated by the TVD technique. In the following, a care bit
threshold of 5 is assumed for the partially-specified test set.

TABLE II. ATOMIC TEST VECTORS OF EXAMPLE

atv det i1 i2 i3 i4 i5 i6 i7 i8 extracted from
ta1
1 f1 0 0 1 X X X X X p1

ta2
1 f1 X X 1 0 0 X X X p2

ta3
2 f2 X 0 1 1 X X X X p3

ta4
2 f2 X X X 0 X X 1 1 p4

ta5
2 f2 X X 1 1 X X 0 0 p1

ta6
3 f3 X X X X X 1 0 0 p1

ta7
4 f4 1 0 1 X X X X X p2

ta8
4 f4 1 0 X 1 X X X X p3

ta9
5 f5 X X 0 X X 1 X X p4

ta10
5 f5 X X 1 X 1 X 0 0 p3

ta11
6 f6 1 1 X X 1 1 X X p4

ta12
7 f7 X X X X X 0 1 0 p2

TABLE III. PARTIALLY-SPECIFIED PATTERNS USING DUPLICATION

i1 i2 i3 i4 i5 i6 i7 i8 det. faults
p1.1 X X 1 1 X 1 0 0 f2, f3
p1.2 0 0 1 X X X X X f1
p2.1 1 0 1 X X X X X f4
p2.2 X X X X X 0 1 0 f7
p3.1 X X 1 X 1 X 0 0 f5
p4.1 1 1 X X 1 1 X X f6

First, Table III show which patterns would be generated if the
pattern structures are retained.

Here, p1 is splitted into two patterns p1.1 and p1.2 detecting
all faults in p1. While splitting p2, f1 can be ignored since it
is already detected by p1.2. However, f4 and f7 cannot be
detected together with the threshold of 5. Therefore, p2.1 and
p2.2 are created. Patterns p3 and p4 do not have to be duplicated
since from the faults detected by p3 only f5 have to covered.
The same holds for p4 and fault f6. For both patterns, the
atomic test vectors ta105 and ta116 can be used.

Now, the proposed procedure is presented. First, the fol-
lowing fault ordering is generated based on the number of
detections:

f7, f6, f3, f4, f1, f5, f2

The atomic test vector ordering presented in the Table II (top-
down for each fault) is used as second criterion. The produced
four patterns are given in Table IV.

The first pattern pM1 detects only f7 since this fault cannot
be detected together with any other atomic test vector using
the given care bit threshold. Then, ta116 and ta95 are merged into
pM2 detecting f6 and f5. For the third pattern pM3, the atomic
vectors ta63 and ta52 are merged. The remining faults f4 and f1
are then detected by pM4 which is generated by merging ta74
and ta21 . In this simple example, the resulting pattern set is as
small as the initial pattern set but with no test exceeding the
threshold of 5 care bits.

IV. EXPERIMENTAL RESULTS

The techniques proposed in this paper were implemented in
C++ and integrated into an academic test framework running
a SAT-based ATPG engine [25]. Experiments were conducted
on an Intel Xeon E3-1240 (GNU/Linux, 64bit, 32GByte RAM,
3.4 GHz) in single-threaded mode.

Table V presents experimental results for the academic
ISCAS’89 and ITC’99 benchmarks. Column Init #Pat presents
the size of the fully-specified basis test set generated by the
SAT-based ATPG procedure from [25]. Column Target %
spec. gives the targeted (maximum) number of specified bits.
Three different targets were used. The different thresholds
are explained by the varying circuit characteristics. For some



TABLE IV. PARTIALLY-SPECIFIED PATTERNS USING MERGING

i1 i2 i3 i4 i5 i6 i7 i8 det. faults
pM1 X X 1 1 X 1 0 0 f7
pM2 X X X X X 0 1 0 f6, f5
pM3 X X 1 X 1 X 0 0 f3, f2
pM4 1 1 X X 1 1 X X f4, f1

circuits, it was not possible to guarantee a high fault coverage
with 1 or 5% of maximum bits. The threshold was increased
for these circuits. Three different configurations were used for
which the resulting pattern count is given in the respective
column:

• Prev. #Pat – Here, a pattern splitting (duplication)
strategy similiar to previous work, e.g. used in [22],
[24], was implemented, where the method focuses on
the given pattern structures.

• Single #Pat – The proposed TVD method as well as
the merging algorithm is used in this configuration.
However, only one atomic test vector is extracted
(single detection).

• Mult. #Pat – Here, the full methodology proposed in
this paper is used. Atomic test vectors are extracted
using TVD and multiple detection and the merging
algorithm uses the proposed fault and test ordering.

The smallest pattern count entry for each circuit and each
target threshold is marked bold. Comparing pattern splitting
and the single detection approach, it can be seen that they
produce mostly comparable results if a high threshold (50%
X) is used. If the threshold is diminished, the proposed single
detection approach has a clear advantage and produces less
patterns. For the smallest threshold, the pattern count can even
be reduced for some circuits to less than half of the pattern
count.

The pattern count reduction can even be improved by using
multiple detection. For all circuits and target thresholds, this
configuration yields the best results. For b22 for instance, the
pattern count is less than 40% of the pattern splitting test set
size. The highest reduction compared to the single detection
configuration is achieved for b17. Here, the pattern count can
be reduced by additional 22%. It is also noticeable that this
approach yields less patterns (with the same fault coverage)
for half of the circuits when the threshold is set to 50%.
These results clearly show the effectivness of the proposed
methodology in generating a compact test set with partially-
specified tests.

Next, Table VI presents the experimental results for four
industrial circuits provided by NXP Semiconductors. The
application of the proposed methodology is again applied
in single and multiple detection mode for three different
thresholds: 1%, 5% and 50% specified bits. However, the 1%
care bit threshold was not feasible for two circuits due to the
circuit characterics. Differently to the previous experiment,
three different test sets were used for each circuit (given in
the lines {#T low, #T med, #T high}). The test set generated
by a commercial ATPG tool with highest compaction effort is
marked by an ’*’. The other two test sets were generated by
SAT-based ATPG [25] using different compaction settings.

Column Init #Pat gives the pattern count of the fully-
specified initial test set. Columns entitled t TVD presents the

run time spent for the TVD process in CPU seconds,3 while
column t merge gives the run time spent for the merging
process. The resulting test set size is shown in columns named
#Pat.

Generally, it can be seen that the test set size grows (as
expected) when reducing the specified bits threshold. However,
this is acceptable since it enables the use of more effective
test compression techniques. Comparing the run times, the
approach using multiple detection needs more run time for
TVD as well as for the merging algorithm than the approach
using single detection. The reason for this is that more data has
to be processed during atomic test vector extraction as well as
during the merging procedure. However, the multiple detection
technique also yields improved results.

Again, if a high threshold is used, the compaction results
between single and multiple detection are mostly comparable
with a slight advantage for multiple detection. However, for a
small number of specified bits, i.e. 5% and 1%, the multiple
detection approach is far more effective and yields the best
results for the targeted circuits. Here, the good results can be
obtained from test sets generated by a commercial ATPG tool
as well as by SAT-based ATPG.

A further interesting observation can be made from the
comparison of the different test sets for one circuit. In most
cases, the initial size of the fully-specified test set directly
influences the final test set size of the partially-specified test
set. A large fully-specified test set leads also to a larger
partially-specified test set, while a small basis test set is
typically transformed into a smaller partially-specified test set.
This shows that the proposed methodology benefits from the
compaction effort of the inital test set generation.

In summary, the experimental results show that the pro-
posed techniques are more effective in producing a small test
set with a target threshold of specified bits than previous
pattern duplication techniques. This holds particularly if a
small number of care bits is required which is important for
designs using modern test compression techniques. It is also
shown that the proposed techniques benefits from regular test
compaction techniques.

Future work is the coupling with different test compression
techniques to reduce the test pattern loss due to the incom-
patibility with the applied test compression scheme and the
application in the field of low power testing.

V. CONCLUSIONS

Current designs use test compression techniques to reduce
the amount of test data in the post-production test. This puts
constraints on the test generation process. A large number of
unspecified bits is necessary that effective test compression
techniques can be applied. This paper proposes new decom-
posing and merging techniques to transform a fully-specified
test set into a partially-specified test set in which each test
vector is guaranteed to have a lower number of care bits than
a specified threshold. The experimental results show that these
technique can be effectively applied to academic benchmarks
and industrial circuits. Additionally, it is shown that smaller
fully-specified test sets lead to smaller partially-specified test
sets.

3Please note that the main share of the run time is spent by an academic
fault simulator not trimmed for efficiency.



TABLE V. EXPERIMENTAL RESULTS – ACADEMIC BENCHMARKS

Init Target Prev. Single Mult. Target Prev. Single Mult. Target Prev. Single Mult.
circ #Pat % spec. #Pat #Pat #Pat % spec. #Pat #Pat #Pat % spec. #Pat #Pat #Pat

s35932 47 50 53 24 20 5 220 181 166 1 1134 1042 922
s38417 99 50 106 95 85 15 280 231 213 5 823 728 668
s38584 107 50 120 93 93 5 827 697 669 1 1883 828 808

b15 661 50 686 686 660 30 813 734 676 15 1642 741 683
b17 745 50 778 810 729 15 1701 1608 1273 5 4446 2238 1760
b20 335 50 479 484 438 30 827 741 632 1 – – –
b21 323 50 464 455 417 30 779 620 596 1 – – –
b22 327 50 471 507 449 30 829 810 701 15 1935 844 736

TABLE VI. EXPERIMENTAL RESULTS – INDUSTRIAL CIRCUITS

Single Detection Multiple Detection
50% spec. 5% spec. 1% spec. 50% spec. 5% spec. 1% spec.

test set Init #Pat t TVD t merge #Pat t merge #Pat t merge #Pat t TVD t merge #Pat t merge #Pat t merge #Pat
p35k: 2912 flipflops, 122500 faults

#T low* 1571 52.3 8.8 1451 11.1 1610 – – 1484.2 13.2 1415 28.1 1523 – –
#T med 981 62.1 7.0 981 10.81 1342 – – 1536.0 10.3 980 25.6 1322 – –
#T high 492 53.5 3.9 488 9.2 1012 – – 1080.7 6.0 491 24.9 991 – –

p81k: 4029 flipflops, 363748 faults
#T low 1068 39.0 43.2 1480 215.7 3842 – – 722.5 79.0 1118 1387.2 3369 – –

#T med* 386 27.7 33.0 1025 233.6 4237 – – 788.0 69.3 847 1303.9 3489 – –
#T high 383 25.3 37.9 1296 206.5 3823 – – 605.9 63.2 1032 1063.5 3289 – –

p100k: 5915 flipflops, 349526 faults
#T low 2084 63.9 17.1 2068 55.1 2083 166.2 3907 742.9 22.3 2054 258.8 2056 1056.0 3536

#T med* 2054 61.4 17.4 2049 55.5 2135 162.3 3715 794.6 22.8 2048 260.6 2073 1125.2 3552
#T high 2048 61.4 16.9 2049 57.5 2059 175.7 3883 729.6 22.4 2048 247.1 2052 1043.2 3450

p330k: 18016 flipflops, 1226414 faults
#T low 4328 422.8 159.4 4020 348.4 4027 1309.4 5470 3689.6 250.0 3688 1461.8 3696 9153.4 4807

#T med* 2963 296.1 118.9 2903 314.5 2946 1348.0 5332 2991.4 173.4 2794 1525.7 2802 9982.4 4707
#T high 1730 216.0 88.9 1852 270.2 1892 1060.3 4426 2729.5 137.4 1822 1214.9 1817 6941.5 3876

VI. ACKNOWLEDGMENT

This work has been supported by the Institutional Strategy
of the University of Bremen, funded by the German Excellence
Initiative.

REFERENCES

[1] P. Goel and B. C. Rosales, “Test generation and dynamic compaction
of tests,” in International Test Conference, 1979, pp. 189–192.

[2] I. Pomeranz, L. N. Reddy, and S. M. Reddy, “COMPACTEST: A
method to generate compact test sets for combinational circuits,” IEEE
Transactions on Computer-Aided Design of Integrated Circuits and
Systems, vol. 12, no. 7, pp. 1040–1049, 1993.

[3] S. Kajihara, I. Pomeranz, K. Kinoshita, and S. M. Reddy, “Cost-
effective generation of minimal test sets for stuck-at faults in combina-
tional logic circuits,” IEEE Transactions on Computer-Aided Design of
Integrated Circuits and Systems, vol. 14, no. 12, pp. 1496–1504, 1995.

[4] I. Hamzaoglu and J. H. Patel, “Test set compaction algorithms for
combinational circuits,” in International Conference on Computer-Aided
Design, 1998, pp. 283–289.

[5] X. Lin, J. Rajski, I. Pomeranz, and S. M. Reddy, “On static test
compaction and test pattern ordering for scan designs,” in International
Test Conference, 2001, pp. 1088–1097.

[6] B. Koenemann, “LFSR-coded test patterns for scan designs,” in Euro-
pean Test Conference, 1991, pp. 237–242.

[7] A. Chandra and K. Chakrabarty, “System-on-a-chip test data compres-
sion and decompression architectures based on golomb codes,” IEEE
Transactions on Computer-Aided Design of Integrated Circuits and
Systems, vol. 20, no. 3, pp. 355–368, 2001.

[8] I. Bayraktaroglu and A. Orailoglu, “Concurrent application of com-
paction and compression for test time and data volume reduction in
scan designs,” IEEE Transactions on Computers, vol. 52, no. 11, pp.
1480–1489, 2003.

[9] J. Rajski, J. Tyszer, M. Kassab, and N. Mukherjee, “Embedded de-
terministic test,” IEEE Transactions on Computer-Aided Design of
Integrated Circuits and Systems, vol. 23, no. 5, pp. 776–792, 2004.

[10] S. Mitra and K. S. Kim, “XPAND: An efficient test stimulus com-
pression technique,” IEEE Transactions on Computer-Aided Design of
Integrated Circuits and Systems, vol. 25, no. 2, pp. 163–173, 2006.

[11] N. A. Touba, “Survey of test vector compression techniques,” IEEE
Design & Test of Computers, vol. 23, no. 4, pp. 294–303, 2006.

[12] D. Czysz, G. Mrugalski, N. Mukherjee, J. Rajski, P. Szczerbicki, and
J. Tyszer, “Deterministic clustering of incompatible test cubes for higher
power-aware edt compression,” IEEE Transactions on Computer-Aided

Design of Integrated Circuits and Systems, vol. 30, no. 8, pp. 1225–
1238, 2011.

[13] S. Hellebrand, B. Reeb, S. Tarnick, and H.-J. Wunderlich, “Pattern gen-
eration for a deterministic BIST scheme,” in International Conference
on Computer-Aided Design, 1995, pp. 88–94.

[14] R. Dorsch and H.-J. Wunderlich, “Tailoring ATPG for embedded
testing,” in International Test Conference, 2001, pp. 530–537.

[15] A. Kumar, M. Kassab, E. Moghaddam, N. Mukherjee, J. Rajski, S. M.
Reddy, J. Tyszer, and C. Wang, “Isometric test compression with low
toggling activity,” in International Test Conference, 2014, pp. 1–7.

[16] M. Sauer, S. Reimer, I. Polian, T. Schubert, and B. Becker, “Provably
optimal test cube generation using quantified Boolean formula solving,”
in ASP Design Automation Conference, 2013, pp. 533–539.

[17] M. Sauer, S. Reimer, T. Schubert, I. Polian, and B. Becker, “Efficient
SAT-based dynamic compaction and relaxation for longest sensitizable
paths,” in Design, Automation and Test in Europe, 2013, pp. 448–453.

[18] A. El-Maleh and A. Al-Suwaiyan, “An efficient test relaxation technique
for combinational circuits,” in VLSI Test Symposium, 2002, pp. 53–59.

[19] K. Miyase and S. Kajihara, “XID: Don’t care identification of test
patterns for combinational circuits,” IEEE Transactions on Computer-
Aided Design of Integrated Circuits and Systems, vol. 23, no. 2, pp.
321–326, 2004.

[20] M. A. Kochte, C. G. Zoellin, M. E. Imhof, and H.-J. Wunderlich, “Test
set stripping limiting the maximum number of specified bits,” in IEEE
International Symposium on Electronic Design, Test and Applications,
2008, pp. 581–586.

[21] S. N. Neophytou and M. K. Michael, “Test set generation with a large
number of unspecified bits using static and dynamic techniques,” IEEE
Transactions on Computers, vol. 59, no. 3, pp. 301–316, 2010.

[22] I. Pomeranz and S. M. Reddy, “Reducing the number of specified values
per test vector by increasing the test set size,” IEE Computers and
Digital Techniques, vol. 153, no. 1, pp. 39–46, 2006.

[23] A. H. El-Maleh, M. I. Ali, and A. A. Al-Yamani, “Reconfigurable
broadcast scan compression using relaxation-based test vector decom-
position,” IET Computes and Digital Techniques, vol. 3, no. 2, pp. 143–
161, 2009.

[24] M. A. Kochte, C. G. Zoellin, and H.-J. Wunderlich, “Concurrent self-
test with partially specified patterns for low test latency and overhead,”
in IEEE European Test Symposium, 2009, pp. 53–58.

[25] S. Eggersglüß, K. Schmitz, R. Krenz-Bååth, and R. Drechsler,
“Optimization-based multiple target test generation for highly com-
pacted test sets,” in IEEE European Test Symposium, 2014, pp. 1–6.


